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Noise reduction is one of the most exciting problems in electronic speckle pattern interferometry. We
present a homomorphic partial differential equation filtering method for interferometry fringe patterns.
The diffusion speed of the equation is determined based on the fringe density. We test the new method
on the computer-simulated fringe pattern and experimentally obtain the fringe pattern, and evaluate its
filtering performance. The qualitative and quantitative analysis shows that this technique can filter off the
additive and multiplicative noise of the fringe patterns effectively, and avoid blurring high-density fringe.
It is more capable of improving the quality of fringe patterns than the classical filtering methods.
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Electronic speckle pattern interferometry (ESPI) is a
well-known, nondestructive, and full-field technique for
displacement measurements[1−3]. Accurate extraction of
phase from fringe patterns is of fundamental importance
for the successful application of ESPI in obtaining the
displacement. However, the strong grain-shape random
noise in fringe patterns leads to heavy restraint to phase
extraction. Therefore, it is important to filter off the
noise from fringe patterns to make phase extraction eas-
ier, more robust, and more accurate[2]. In general, the
traditional filtering methods including spatial filtering
and frequency filtering, usually result in blurring effect.
Therefore, some algorithms have been proposed to reduce
the noise for ESPI fringe patterns, including Lee filtering,
which is a noise filtering by the use of local statistics[4],
span filtering, which filters off the fringe noise in a curva-
ture window[2], and recursive algorithm, which has high
computation speed but the result has low contrast[5].

Since the initial evolving equation, heat conduction
equation, was used in image filtering in 1983[6], various
forms of partial differential equations (PDEs) have been
proposed for the filtering of noisy images[7−12]. How-
ever, the existing PDE filtering methods usually lead to
insufficient denoising in the interior area of fringe pat-
terns, or blurring effect on the fringe patterns with high
fringe density. This is because these general PDE meth-
ods do not consider the fringe features, i.e., the multi-
plicative noise and the fringe density.

Perona et al. proposed a nonlinear anisotropic
diffusion equation (called PM equation)[7], which has
been widely used in image denoising and enhancement.
The gray levels of an image u(x, y, t) : Ω × [0, +∞) → R
are diffused according to

∂tu = div (c (|∇u|)∇u) , u (x, y, 0) = I (x, y) , (1)

where I (x, y) is the initial image, ∇u is the gradient of
u, and diffusion gene c is a nonincreasing function of the

gradient such as 1/(1 + |∇u|2/k2). It implies a direct
relation between the image smoothness at a point and
the image gradient[8]. Unfortunately, this model is very
sensitive to noise.

By formally developing the divergence term, the PM
equation can be described in the inner orthogonal co-
ordinates based on the image feature[9]. We define the
inner orthogonal coordinates, i.e., the normal direction
~N and the tangent direction ~T as

~N = (ux, uy)/
√

u2
x + u2

y,
~T = (−uy, ux)/

√

u2
x + u2

y. (2)

Then Eq. (1) can be put in terms of the second deriva-

tives of ~N and ~T :
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From Eq. (3), one can find that if |∇u|/k ≤ 1, it is a for-
ward diffusion model and the image becomes denoised;
but if |∇u|/k > 1, it includes a backward diffusion along

the normal direction ~N and the equation is ill-posed in
mathematics. Qian et al. modified the diffusion gene
and proposed a new model[9]
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(5)
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which avoids the problem of backward diffusion.
In general, the intensity distribution of a noisy inter-

ferogram can be expressed as

I (x, y) = P (x, y) + Q (x, y)Nm (x, y) cosϕ (x, y)

+NA (x, y) , (6)

where P (x, y) is the background, Q (x, y)/P (x, y) is the
fringe contrast, NA (x, y) and Nm (x, y) are the additive
noise and multiplicative noise of the fringe pattern, re-
spectively. The phase ϕ (x, y) is related to a physical
variable to be inspected.

In this letter, we propose a homomorphic PDE filtering
method for ESPI fringe patterns based on fringe features.
Considering the feature of full of both additive noise and
multiplicative noise in ESPI fringe patterns, we resort
to the homomorphic PDE filtering algorithm[10]. This
method firstly uses the PDE to filter off the additive
noise of an image, then changes the image by logarithmic
transform and applies the PM equation again to filter off
the multiplicative noise, at last obtains the final denoised
image by exponential transform.

As for the feature of different densities in the entire
fringe pattern, the diffusion of the same degree is un-
reasonable and the fringe density must be considered in
PDE filtering. Yang et al. proposed a simple and accu-
rate accumulation method for the determination of the
fringe density[13]. Firstly, define the differences along
four certain orientations of 0◦, 45◦, 90◦, and 135◦ as

d0 (i, j) = |ui−1,j − ui+1,j | ×
√

2,

d45 (i, j) = |ui−1,j+1 − ui+1,j−1| ,

d90 (i, j) = |ui,j−1 − ui,j+1| ×
√

2,

d135 (i, j) = |ui−1,j−1 − ui+1,j+1| , (7)

in which for any function (i.e., image) u (x, y), we let ui,j

denote u (i, j) for 1 < i < M , 1 < j < N .
Secondly, calculate the four sums of differences along

the four orientations in a W × W square window A as

Dangle (i, j) =
∑

(i,j)∈A

dangle (i, j),

(angle = 0, 45, 90, 135) . (8)

Finally, the fringe number in the calculation window
can be estimated with

Dn =
1

4BW
(|D0 − D90| + |D45 − D135|) . (9)

In this letter, we choose B as a normalized coefficient,
whose function is setting the values of Dn to [0, 1]. In
this way, the fringe density calculated at each point is
recorded in a map Id (x, y), namely fringe density map.

Using the obtained fringe density map Id (x, y), we pro-

pose a new diffusion equation:

∂tu =
(1 − qId)

√
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 ,

u (x, y, 0) = I (x, y) . (10)

The term v is defined as v = Gσ ∗ u, where Gσ =

Cσ−1/2 exp
(

−(x2+y2)
4σ

)

is a Gaussian smoothing kernel.

The strong grain-shape random noises in ESPI fringe pat-
terns always introduce very large oscillations of the gra-
dient. To avoid noise-sensitive problem of the PM equa-
tion, Gaussian convolution is performed a priori.

Another term to be noted is the total diffusion gene

(1 − qId)

/√

1 + |∇v|2
/

k2, which controls the diffusion

speed of each pixel, with q being a constant between 0 and

1. The term of 1

/√

1 + |∇v|2
/

k2 ensures the minimal

diffusion at the edge of an image and (1 − qId) guar-
antees less smooth in the area with high-density fringe
than that with low-density fringe. Thanks for the previ-
ous Gaussian filter, the isolated noise, which has a large
value of ∇u but small value of ∇(Gσ ∗u), will obtain the
high diffusion speed; whereas, the true edge, which has
a large value of ∇(Gσ ∗ u), will gain low diffusion speed
in the gradient direction and be preserved. In addition,
owing to the normalized fringe density map Id, the term
of (1 − qId), whose value is between (1 − q) and 1, makes
the total diffusion slower around the high-density fringe.
And the function of q is balancing the diffusion speed
between high-fringe-density area and low-fringe-density
area.

We summarize the steps to implement the proposed
homomorphic PDE filtering method as follows.

1) Establish the fringe density map Id (x, y) for the ini-
tial ESPI fringe pattern I (x, y) based on Eq. (9).

2) Using Id (x, y), implement the PDE filtering Eq. (10)
for I (x, y) to filter off the additive noise, then map the
gray value of the filtered result into [0,255], and obtain
the mid-filtered image I1 (x, y).

3) Transform I1 (x, y) to I2 (x, y) by

I2 (x, y) = 100 lg [I1 (x, y) + 1] , (11)

where I1 (x, y) is added by 1 and lg [I1 (x, y) + 1] is mul-
tiplied by 100 to ensure I2 (x, y) in [0,255].

4) Using Id (x, y), implement Eq. (10) again to filter
off the multiplicative noise and obtain the filtered image
I3 (x, y).

5) Transform I3 (x, y) to I4 (x, y) by

I4 (x, y) = 10
1

100
I3(x,y) (12)

After mapping the gray values of I4 (x, y) to [0,255], our
final filtered result is acquired.

For performing our filtering methods numerically, we
attempt to discretize them. We assume that the fringe
density map Id has been acquired. For any function (i.e.,
image) u (x, y), we let ui,j denote u (i, j), and (Id)i,j de-

note Id (i, j) for 1 ≤ i ≤ M , 1 ≤ j ≤ N . The evolution
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equation obtains images at times tn = n∆t. We denote
u (i, j, tn) by un

i,j . The time derivative ut at (i, j, tn) is
approximated by the forward difference

(ut)
n
i,j =

(

un+1
i,j − un

i,j

)/

∆t, (13)

where ∆t is time step size. And the spatial derivatives
are
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And the boundary conditions are

un
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i,N , i = 1, 2, · · · , M,
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on Eq. (4). We denote αn
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Finally, we obtain the explicit discrete scheme of Eq. (10)
as
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(17)

We have tested the proposed method on the computer-
simulated fringes and experimentally obtained fringes, re-
spectively, which include sparse and dense fringes. For
presenting the real filtering performance of our homo-
morphic PDE, here the tested original speckle fringe pat-
terns are also obtained by model (5) and the Lee filtering
method.

Figure 1(a) shows a computer-simulated fringe gener-
ated based on Eq. (6) by M×N pixels with Nm (x, y) and
NA (x, y) uniformly distributed over the intervals [0, 1]
and [0, Im] respectively, where Im is a constant value.
Here, we choose P (x, y) ≡ 150, Q (x, y) ≡ 100, Im = 50,
and ϕ (x, y) is calculated from

ϕ(x, y) = 0.03π (x + y) [(x/M) + (y/N)] ,

x = 1, 2, · · · , M, y = 1, 2, · · · , N. (18)

Fig. 1. A computer-simulated fringe pattern and its filtered
images. (a) Initial image; (b) fringe density map; (c) our
filtered image; (d) model (5) filtering image; (e) Lee filtering
image.

Fig. 2. An experimental fringe pattern and its filtered images.
(a) Initial image; (b) fringe density map; (c) our filtered im-
age; (d) model (5) filtering image; (e) Lee filtering image.

The fringe density values in Fig. 1(b) are represented by
fringe numbers in a 51 × 51 square window. To avoid
the inherent edge distortion error, we ignore 25 pixels at
the boundary. In Fig. 1(b), the image gray denotes the
fringe density. One can find that the lower gray values
correspond to the lower fringe densities. Figure 1(c) is
the filtered image by our method with several same pa-
rameters including ∆t = 0.2, k = 100, q = 0.8 for the
whole process, and different n1 = 20 (i.e., 20 iterations)
for filtering off the additive noise and n2 = 50 for reduc-
ing the multiplicative noise. Figure 1(d) shows the result
filtered by the model (5) with ∆t = 0.2, n = 20, and
k = 100. And the Lee filtering result is given in Fig. 1(e)
in a 5 × 5 square window.

Figure 2(a) is an experimentally obtained fringe pat-
tern, which depicts the derivative of the out-of-plane dis-
placement of the side wall of a tire. Similar results for
Fig. 2(a) as those for Fig. 1(a) are given in Figs. 2(b)—
(e). The calculation window for fringe density map is
also 51 × 51. The parameters for Figs. 2(c) and (d) are
∆t = 0.15, k = 100, q = 0.6, and n1 = 8 (filtering off
the additive noise), n2 = 30 (reducing the multiplicative
noise), and n = 8 (denoising by model (5)), respectively.
And a 5 × 5 square window is adopted in Lee filtering.

As we can see from the original images that the noise in
the fringe patterns is high. It is noticed that the filtered
fringes obtained by our method are smoother than those
obtained by Lee filtering method (see Figs. 1(c), 1(e),



March 10, 2009 / Vol. 7, No. 3 / CHINESE OPTICS LETTERS 213

2(c), 2(e)), which indicates that our method can remove
noise more effectively for the high-noise fringe patterns.
Another obvious phenomenon is that the edges of the
fringe patterns are better-preserved by our method than
by the filtering model (5) (see Figs. 1(c), 1(d), 2(c), 2(d)),
especially for Fig. 2(a), which has dense fringes.

To quantitatively evaluate the performance of our
method further, the speckle index s[14] is used to quan-
tify the local smoothness of the filtered fringe patterns.
This parameter is evaluated as the average of the ratios
of the local standard deviation to its mean:

s =
1

M × N

M
∑

k=1

N
∑

l=1

σk,l

〈Ik,l〉
, (19)

where 〈Ik,l〉 is the average gray in the neighborhood for a
3×3 window of the current point, and the local standard
deviation σk,l is defined as

σk,l =

√

√

√

√

1

8

1
∑

i=−1

1
∑

j=−1

(Ik−i,l−j − 〈Ik,l〉). (20)

The speckle index can be regarded as an average recip-
rocal of signal-to-noise ratio (SNR), where the signal is
the mean value and the noise is the standard deviation.
Therefore, a low speckle index will be regarded as an
indication of local smoothness of the fringe pattern.

We calculate the s values for the filtered results in
Figs. 1 and 2, which are given in Table 1. The distinct
results emerge from the analysis of the numerical tests.
It can be seen that our method can give the lowest s
among the three filtering methods for Figs. 1(a) and
2(a). The results are reasonable because our filtering
method can filter off not only the additive noise but
also the multiplicative noise. Meanwhile, our method
can balance denoising and blurring by the density map,
so that the noise area with low-density fringe can be
smoothed sufficiently. Therefore, our filtering results
are even better than those obtained by the other two

Table 1. Performance Evaluation for the Three
Filtering Methods

Image
Fig. 1 Fig. 2

(c) (d) (e) (c) (d) (e)

s 0.1100 0.1123 0.1365 0.0873 0.0991 0.1101

methods.
In conclusion, we present an efficient homomorphic

PDE filtering method based on fringe density for inter-
ferometric fringe patterns. First of all, the fringe density
map is formed from the fringe pattern. Then, an im-
proved homomorphic PDE filtering is implemented to
filter off the additive and multiplicative noises of ESPI
fringe patterns. This method can provide optimal results
in denoising without destroying the fringe edges in ex-
cess, especially for dense fringes. We tested the proposed
filtering method on computer-simulated and experimen-
tally obtained ESPI fringe patterns respectively, and
compared the results with the traditional filtering meth-
ods. The experimental results show that our method can
provide good visual inspection and performance evalua-
tion value. It is capable of significantly improving the
quality of the fringe patterns.
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